Please check the examination details below before entering your candidate information	
Candidate surname	Other names
Centre Number Candidate Number	
Pearson Edexcel International Advanced Level	
Wednesday 18 October 2023	
Morning (Time: 1 hour 30 minutes)	Paper reference WMA13/01
Mathematics	
International Advanced Level Pure Mathematics P3	
You must have: Mathematical Formulae and Statistical Tables (Yellow), calculator Total Marks	

Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P74328A
©2023 Pearson Education Ltd.
Z:1/1/1/

$$f(x) = x^2 - 5x + e^x \qquad x \in \mathbb{R}$$

(a) Show that the equation f(x) = 0 has a root, α , in the interval [1, 2]

(2)

The iterative formula

$$x_{n+1} = \sqrt{5x_n - e^{x_n}}$$

with $x_1 = 1$ is used to find an approximate value for the root α .

- (b) (i) Find the value of x_2 to 4 decimal places.
 - (ii) Find, by repeated iteration, the value of α , giving your answer to 4 decimal places.

(3)

1. a)
$$f(x) = x^2 - 5x + e^x = 0$$

$$f(1) = (1)^2 - 5(1) + e^{(1)} = -1.282$$

given that f(x) is continuous between 182

$$f(2) = (2)^2 - 5(2) + e^{(2)} = 1.389$$

because there's a sign change

→ root lies between 1 & 2

$$b(i) \quad \chi_{n+1} = \sqrt{5\chi_n - e^{\chi_n}}$$

$$x_1 = 1$$

$$x_2 = x_{1+1} = \sqrt{5(1) - e^2} = 1.5105$$

(ii)
$$x_3 = 1.7388$$
 $x_6 = 1.7340$ consistent

oc = 1.7340

$$x_4 = 1.7331$$
 $x_7 = 1.7340$] 4 d.p

$$\chi_5 = 1.7342$$

The function f is defined by

$$f(x) = \frac{x+3}{x-4} \qquad x \in \mathbb{R}, x \neq 4$$

(2)

(b) Find
$$f^{-1}$$

The function g is defined by

$$g(x) = x^2 + 5 \qquad x \in \mathbb{R}, x > 0$$

$$x \in \mathbb{R}, x > 0$$

(c) Find the exact value of a for which

$$gf(a) = 7$$

(3)

2. a)
$$f(x) = \frac{x+3}{x-4}$$

$$f(6) = \frac{6+3}{6-4} = \frac{9}{2}$$

$$f(f(6)) = f(9) = \frac{9/2 + 3}{9/2 - 4} = 15$$

b) to find
$$f^{-1}(x)$$
:

$$f(x) = x+3$$

rearrange to make y the

3 replace y with
$$f^{-1}(x)$$
:

$$y = \frac{4x + 3}{x - 1}$$

:
$$f^{-1}(x) = \frac{4x+3}{x-1}$$

Question 2 continued

$$f^{-1}(x) = \frac{4x+3}{x-1}$$
 $x \in \mathbb{R}$
 $x \neq 1$
 $x \neq 1$
 $x \neq 1$
 $x \neq 1$

c)
$$g(x) = x^2 + 5$$

$$=9\left(\begin{array}{c} \alpha+3\\ \alpha-4 \end{array}\right)=$$

$$= \left(\frac{\alpha+3}{\alpha-4}\right)^2+5$$

$$= \frac{\alpha^2 + 6\alpha + 9}{\alpha^2 - 8\alpha + 16} + 5 = \frac{\alpha^2 + 6\alpha + 9 + 5\alpha^2 - 40\alpha + 80}{\alpha^2 - 8\alpha + 16}$$

$$g(f(\alpha)) = 7$$

$$\frac{6a^2 - 34a + 98}{a^2 - 8a + 16} = 7$$

$$6a^2 - 34a + 98 = 7a^2 - 56a + 112$$

$$a^2 - 22a + 14 = 0$$

reject negative solution as x>0 for g(x)

3. (a) Using the identity for cos(A + B), prove that

$$\cos 2A \equiv 2\cos^2 A - 1$$

(2)

(b) Hence, using algebraic integration, find the exact value of

$$\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} (5 - 4\cos^2 3x) \, \mathrm{d}x$$

(4)

3. a) DOUBLE ANGLE
$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
FORMULA

$$cos(2A) = cos(A+A)$$

=
$$\cos(A)\cos(A) - \sin(A)\sin(A)$$

$$= \cos^2(A) - \sin^2(A)$$

$$-\cos^2(A) + \sin^2(A) = 1$$

$$= \cos^2(A) - (1 - \cos^2(A))$$

$$= 2\cos^2(A) - 1$$

b)
$$\int_{-\pi/8}^{\pi/8} (5-4\omega s^2(3x)) dx$$

$$\pi/_{12}$$

$$= \int_{\pi/12}^{\pi/8} 5 - 2(2\cos^2(3x)) dx \qquad \qquad = \underbrace{2\cos^2(x)}_{2\cos^2(x)} = \cos(2x) + 1$$

$$= \int_{\pi/12}^{\pi/8} 5 - 2(\cos(6x) + 1) dx$$

www.mymathscloud.com

Question 3 continued

$$= \int_{\pi/12}^{\pi/8} 3 - 2\cos(6x) dx$$

=
$$[3x - \sin(6x)]_{\pi/(2}$$

$$= \frac{317}{8} - \frac{1}{3} \sin \left(\frac{617}{8} \right) - \frac{317}{12} + \frac{1}{3} \sin \left(\frac{617}{12} \right)$$

$$=\frac{11}{8}+\frac{2-\sqrt{2}}{6}$$

(Total for Question 3 is 6 marks)

www.nymathscloud.com

4. A new mobile phone is released for sale.

The total sales N of this phone, in **thousands**, is modelled by the equation

$$N = 125 - Ae^{-0.109t}$$

$$t \geqslant 0$$

where A is a constant and t is the time in months after the phone was released for sale.

Given that when t = 0, N = 32

(a) state the value of A.

Given that when t = T the total sales of the phone was 100 000

(b) find, according to the model, the value of T. Give your answer to 2 decimal places.

(3)

(c) Find, according to the model, the rate of increase in total sales when t = 7, giving your answer to 3 significant figures.

(Solutions relying entirely on calculator technology are not acceptable.)

(2)

The total sales of the mobile phone is expected to reach 150 000

Using this information,

(d) give a reason why the given equation is not suitable for modelling the total sales of the phone.

(1)

$$(4.a) N = 125 - Ae^{-0.109t}$$
 t>0

when
$$t=0 \rightarrow 32 = 125 - Ae^{-0.109(0)}$$

$$A = 93$$

$$\int \frac{in + housands}{100} = 125 - 93e^{-0.109(T)}$$

$$e^{-0.109T} = \frac{25}{93}$$

$$-0.109T = ln\left(\frac{25}{93}\right) \rightarrow T = 12.05$$
 months

Question 4 continued

c) rate of increase =
$$\frac{dN}{dt}$$
 when $t=7$

$$\frac{dN}{dt} = -(93)(-0.109t)e^{-0.109t}$$

when
$$t=7 \rightarrow dN = -(93)(-0.109)e^{-0.109(7)}$$

= 4.730 thousand phones per month

: 4730 phones per manth

d)
$$N = 125 - 93e^{0.109t}$$

as
$$t \rightarrow \infty$$
 $e^{-0.109t} \rightarrow 0$

$$N = 125 - 93e^{-0.109t}$$
 $\therefore N \rightarrow 125$

As the upper limit is 125 000 phones which is below

the expected total sales of 150000

5. The curve C has equation

$$y = \frac{\ln(x^2 + k)}{x^2 + k} \qquad x \in \mathbb{R}$$

where k is a positive constant.

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Ax(B - \ln(x^2 + k))}{(x^2 + k)^2}$$

where A and B are constants to be found.

(3)

Given that C has exactly three turning points,

(b) find the x coordinate of each of these points. Give your answer in terms of k where appropriate.

(3)

(c) find the upper limit to the value for k.

(1)

5. a)
$$y = \ln(x^2 + K)$$
 $x \in R$

Quotient rule for :
$$y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{\sqrt{\frac{dx}{dx}} - u \frac{dy}{dx}}{\sqrt{2}}$$
differentiating $\sqrt{\frac{dx}{dx}} = \frac{\sqrt{\frac{dx}{dx}} - u \frac{dx}{dx}}{\sqrt{2}}$

$$u = \ln(x^2 + K) \qquad du = \frac{2x}{x^2 + K}$$

$$v = x^2 + K \qquad dv = 2x$$

$$\frac{dy}{dx} = \frac{(x^2 + k)(\frac{2x}{x^2 + k}) - (\ln(x^2 + k))(2x)}{(x^2 + k)^2}$$

$$= \frac{2x(1-\ln(x^2+K))}{(x^2+K)^2} \qquad A=2$$

Question 5 continued

given that C has 3 turning points -> at which dy = 0

$$\frac{2x\left(1-\ln\left(x^2+K\right)\right)}{\left(x^2+K\right)^2}=0$$

$$2x\left(1-\ln\left(x^2+K\right)\right)=0$$

$$\therefore x = 0 \quad \cup \quad \ln(x^2 + K) = 1$$

$$\chi^2 + K = e$$

$$x = \pm \sqrt{e - k}$$

because there are 3 real coordinates for turning points

as you can only take a square root of a number ≥0

K & e

so upper limit of k = e

(Total for Question 5 is 7 marks)

6. An area of sea floor is being monitored.

The area of the sea floor, $S \,\mathrm{km}^2$, covered by coral reefs is modelled by the equation

$$S = pq^t$$

where p and q are constants and t is the number of years after monitoring began.

Given that

$$\log_{10} S = 4.5 - 0.006t$$

- (a) find, according to the model, the area of sea floor covered by coral reefs when t=2 (2)
- (b) find a complete equation for the model in the form

$$S = pq^t$$

giving the value of p and the value of q each to 3 significant figures.

(3)

(c) With reference to the model, interpret the value of the constant q

(1)

$$6.0$$
 $\log_{10}(s) = 4.5 - 0.006t$

when
$$t=2 \rightarrow \log_{10}(S) = 4.5 - 0.006(2)$$

$$log_{10}(s) = 4.488$$

$$S = pq^{t}$$

$$\log_{10}(s) = \log_{10}(pq^{t})$$

$$\log_{10}(s) = \log_{10}(p) + \log_{10}(q^{t})$$

a
$$\log_b(c) = \log_b(c^a)$$

$$\log_{\alpha}b + \log_{\alpha}c = \log_{\alpha}(bc)$$

$$log_ab = c \rightarrow a^c = b$$

$$log_{10}(s) = log_{10}(p) + t log_{10}(q)$$

compoure to given expression

www.mymathscloud.com

Question 6 continued

$$\therefore \log_{10}(p) = 4.5 \qquad \log_{10}(q) = -0.006$$

$$p = 10^{4.5} = 31600$$
 $q = 10^{-0.006} = 0.986$

$$\therefore S = 31600 \times (0.986)^{t}$$

C) The proportion of onea convened by coral neets retained from year to year

as
$$S = pq^{t}$$

initial I I prop. of area that is kept every year area

(Total for Question 6 is 6 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7.

Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x) where

$$f(x) = e^{-x^2} (2x^2 - 3)^2$$

(a) Find the range of f

(2)

(b) Show that

$$f'(x) = 2x(2x^2 - 3)e^{-x^2}(A - Bx^2)$$

where A and B are constants to be found.

(4)

(4)

Given that the line y = k, where k is a constant, k > 0, intersects the curve at exactly two distinct points,

(c) find the exact range of values of k

9 19

As we can see from the diagram,

the range of f(x) is below the max. point which

lies on the y-axis (where x=0) & above the xaxis

$$f(0) = e^{-(0)^2} (2(0)^2 - 3)^2 = 9$$

: roude: 0<f(x) < 9

Question 7 continued

b)
$$f(x) = e^{-x^2} (2x^2 - 3)^2$$

$$u = e^{-\chi^2}$$

$$\frac{du}{dx} = -2\chi e^{-\chi^2}$$

$$v = (2x^2 - 3)^2$$
 $dv = 2 \times (4x) \times (2x^2 - 3)$ dx $= 8x(2x^2 - 3)$

$$f'(x) = (-2xe^{-x^2})(2x^2-3)^2 + (e^{-x^2})(8x(2x^2-3))$$

$$= 2x(2x^2-3)e^{-x^2}(-(2x^2-3)+4)$$

$$= 2x(2x^2-3)e^{-x^2}(7-2x^2) \qquad A = 7$$

$$B = -2$$

$$\bigcirc$$
 y=k intersects the curve at exactly 2 distinct points

First we must work out the coordinates of the stationary points:

$$f'(x) = 2x(2x^2-3)e^{-x^2}(7-2x^2) = 0 + \begin{cases} at stationary \\ points, dy \\ dx \end{cases}$$

$$\chi = 0 \ v \ (2\chi^2 - 3) = 0 \ v \ (7 - 2\chi^2) = 0$$

8. (a) Prove that

$$2\csc^2 2\theta (1-\cos 2\theta) \equiv 1 + \tan^2 \theta$$

(4)

(b) Hence solve for $0 < x < 360^{\circ}$, where $x \neq (90n)^{\circ}$, $n \in \mathbb{N}$, the equation

$$2\csc^2 2x(1-\cos 2x) = 4 + 3\sec x$$

giving your answers to one decimal place.

(Solutions relying entirely on calculator technology are not acceptable.)

(4)

8.a) LHS:
$$2 \csc^2(2\theta) (1 - \cos(2\theta))$$
 RHS: $1 + \tan^2(\theta)$

$$= \frac{2(1-\cos(2\theta))}{\sin^2(2\theta)}$$

$$< \cos(2A) = \cos^2(A) - \sin^2(A)$$

$$= \frac{2\left(1-\cos^2(\theta)+\sin^2(\theta)\right)}{\sin^2(2\theta)}$$

$$\bullet \cos^2(A) + \sin^2(A) = 1$$

$$= 2 \left(\frac{\sin^2(\theta) + \sin^2(\theta)}{\sin^2(2\theta)} \right)$$

$$\bullet \sin(2A) = 2\sin(A)\cos(A)$$

$$= \frac{4 \sin^2(\theta)}{(2\sin(\theta)\cos(\theta))^2}$$

$$= \frac{\sin^2(\theta)}{\sin^2(\theta)\cos^2(\theta)} = 1 + \frac{\sin^2(\theta)}{\cos^2(\theta)}$$

$$= 1 + ton^2(\Theta) = RHS$$

b)
$$2 \csc^2(2x)(1-\cos(2x)) = 4+3 \sec(x)$$

identity
$$1 + tan^2(x) = 4 + 3 sec(x)$$

from (a)

$$1 + \frac{\sin^2(x)}{\cos^2(x)} = 4 + \frac{3}{\cos(x)}$$

multiply through

Question 8 continued

$$\cos^2(x) + \sin^2(x) = 4\cos^2(x) + 3\cos(x)$$

$$\cos^2(x) + 1 - \cos^2(x) = 4\cos^2(x) + 3\cos(x)$$

$$4\cos^2(x) + 3\cos(x) - 1 = 0$$

$$(4u - 1)(u + 1)$$

$$\therefore u = \cos(x) = \frac{1}{4} \quad 0$$

9.

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Figure 2

Figure 2 shows a sketch of the curve with equation

$$y = |2 - 4\ln(x+1)|$$
 $x > k$

where k is a constant.

Given that the curve

- has an asymptote at x = k
- cuts the y-axis at point A
- meets the *x*-axis at point *B* as shown in Figure 2,
- (a) state the value of k

(1)

- (b) (i) find the y coordinate of A
 - (ii) find the exact x coordinate of B

(3)

(c) Using algebra and showing your working, find the set of values of x such that

$$\left|2-4\ln(x+1)\right|>3$$

(5)

9.0)
$$y = |2 - 4 \ln(x + 1)|$$
 x>K

K is where value for y is undefined \Rightarrow which occurs when x+1=0 as $\ln(0)$ is undefined

DO NOT WRITE IN THIS AREA

Question 9 continued

$$A = |2 - 4|n(0+1)| = 2$$

(ii)
$$B \rightarrow x$$
-intercept when $y = 0$

$$ln(B+1) = \frac{1}{2}$$

$$B+1=e^{\frac{1}{2}}$$

$$B = e^{\frac{1}{2}} - 1$$

$$(2 - 4\ln(x+1)) > 3$$

$$9-4\ln(x+1)=3$$
 CRITICAL VALUES

$$2-4\ln(x+1)=3$$
 $2-4\ln(x+1)=-3$

$$4\ln(x+1) = -1$$
 $4\ln(x+1) = 5$

$$\ln(x+1) = -1 \qquad \ln(x+1) \quad \frac{5}{4}$$

$$\chi + 1 = e^{\frac{1}{4}} \qquad \chi + 1 = e^{\frac{5}{4}}$$

$$\chi = e^{\frac{1}{4}-1}$$
 $\chi = e^{\frac{5}{4}-1}$ $(\approx -0.22..)$ $(\approx 2.49...)$

10. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

A curve C has equation

$$x = \sin^2 4y \qquad 0 \leqslant y \leqslant \frac{\pi}{8} \qquad 0 \leqslant x \leqslant 1$$

The point *P* with *x* coordinate $\frac{1}{4}$ lies on *C*

(a) Find the exact y coordinate of P

(2)

(b) Find $\frac{dx}{dy}$

(2)

(c) Hence show that $\frac{dy}{dx}$ can be written in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{q + r(x+s)^2}}$$

where q, r and s are constants to be found.

(3)

Using the answer to part (c),

- (d) (i) state the x coordinate of the point where the value of $\frac{dy}{dx}$ is a minimum,
 - (ii) state the value of $\frac{dy}{dx}$ at this point.

(2)

$$(0.0)$$
 $x = \sin^2(4y)$ $0 \le y \le \pi$ $0 \le x \le 1$

$$P : x = \frac{1}{4} \rightarrow \frac{1}{4} = 8in^2(4y)$$

$$\frac{1}{2} = \sin(4y) \qquad y = \frac{11}{24}$$

Question 10 continued

b)
$$\chi = \sin^2(4y)$$

CHAIN RULE:
$$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dy}{dx}$$

$$v = \sin(4y)$$
 $\frac{dv}{dy} = 4\cos(4y)$

$$x = \left(\sin(4y)\right)^2 = v^2 \qquad \frac{dx}{dv} = 2v$$

$$\frac{dx}{dy} = \frac{dx}{dv} \times \frac{dv}{dy}$$

=
$$2V \times 4\cos(4y) = 8(\sin(4y))(\cos(4y))$$

$$\frac{dy}{dx} = \frac{1}{(dx/dy)} : \frac{dy}{dx} = \frac{1}{8(\sin(4y))(\cos(4y))}$$

$$x = \sin^2(4y)$$

$$\cos(4y) = \sqrt{1 - \sin^2(4y)} = \sqrt{1 - x}$$

$$\frac{dx}{dx} = \frac{1}{8\sqrt{x}\sqrt{1-x}} = \frac{1}{\sqrt{64(x-x^2)}}$$

$$= \sqrt{-64((x-\frac{1}{2})^2-\frac{1}{4})}$$

$$q = 16$$
, $r = -64$, $s = -\frac{1}{2}$

$$= \sqrt{16 - 64 \left(x - \frac{1}{2} \right)^2}$$

www.nymathscloud.com

www.mymathscloud.com

Question 10 continued

denominator:
$$\sqrt{16-64(x-1)^2}$$
 always neg

value of the denominator, we must make $-64(x-\frac{1}{2})^2=0$

$$\mathcal{R} = 1$$

(ii)
$$\frac{dy}{dx}$$
 when $x=\frac{1}{2} \Rightarrow \frac{1}{\sqrt{16}} = \frac{1}{4}$

(Total for Question 10 is 9 marks)

TOTAL FOR PAPER IS 75 MARKS

